JCT - Faculty Research Profile - 2017-2021

32 My chapters:  Th. Dana-Picard: On Mathematics, Visual and auditive Aesthetics: the hand hidden in nature II ( אסתטיק ה ויזו אלית ואסתטיקה שמעית – היד הנעל ה בטבע ), 124-160.  Th. Dana-Picard and Y. Klein: The Shape of the minimal Mikveh ( צורת המקוה המינימלי ), 287-302.  Th. Dana-Picard and S. Hershkovitz: Geometrical and Numerical Aspects of Jewish Monuments in Mathematics Education: studies within a Dynamical Geometry environment ( היבטים גאומטריים) ומספרים באתרים יהודיים וחינוך מתמטי: חקירה באמצעות סביבה גאומרטית אינטראקטיבית , 378-415. 4. S. Hershkovitz and Th. Dana-Picard (2021): Problem Solving, Problem Posing & Enhancing Creativity, to appear in (J. Novotná, B. Kaur, B. Doig, edts) Insights from SEMT: Learning from 30 years of Symposia on Elementary Mathematics Teaching, Singapore. 5. Th. Dana-Picard and Z. Kovács (2021): Experimental study of isoptics of a plane curve using dynamical coloring, to appear in (P. Richard, M.P. Velez and S. van Vaerenbergh, edts) Mathematics Education in the Age of Artificial Intelligence, Mathematics Education in the Digital Era Series, Springer, 261-280. Peer-Reviewed Papers in Refereed Journals 1. Th. Dana-Picard and D. Zeitoun (2017): Exploration of Parametric Integrals related to a Question of Soil Mechanics, International Journal of Mathematical Education in Science and Technology 48 (4), 617-630. Referenced in the Online Encyclopedia of Integer Sequences). Cite: 5. IF: 0.648. Q-index: Q2 2. Th. Dana-Picard and N. Zehavi (2017): Automated Study of Envelopes transition from 1-parameter to 2-parameter families of surfaces, The Electronic Journal of Mathematics and Technology 11 (3), 147-160. Elected for printed version in the Journal of Research of Mathematics and Technology 6 (2), 2017, 11-24. Cite: 6. IF: n/a. Q-index: n/a 3. Th. Dana-Picard and S. Hershkovitz (2018): A Glimpse at Mathematics in Jewish Traditional Artefacts, Symmetry: Culture and Science 29 (2), 307-317. Cite: 4. IF: n/a. Q-index: n/a 4. Th. Dana-Picard and D. Zeitoun (2017): A framework for an ICT-based study of parametric integrals, Mathematics in Computer Science 11 (3-4), 285-296. IF: 0.674. Q-index: Q3 5. Th. Dana-Picard (2018): Automated study of a regular trifolium, Mathematics in Computer Science 13 (1-2), 57-67. IF: 0.674. Q-index: Q3. Available as Springer's 'Online First': http://link.springer.com/article/10.1007/s11786-018-0351-7

RkJQdWJsaXNoZXIy MjgzNzA=