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We consider an (S ~ 1, ) type perishable inventory system in which the maximum shelf life of each item is fixed. An order for an
item is placed at each demand time as well as at each time that the maximum shelf life of an item is reached. The order lead times
are constant, and the demand process for items is Poisson. Although the resulting process is ostensibly nonregenerative, we adapt
level-crossing theory for the case of an S-dimensional Markov process to obtain its stationary law. Within this framework a number

of model variants are solved.

In some recent papers, Kaspi and Perry (1984) and Perry
and Posner (1989, 1990), examine an inventory system
of perishable items in which the arrival process of items
and the demand process for those items are random, and
mutually independent. In particular, when both processes
are Poisson, explicit results can be obtained that have util-
ity for optimization purposes. In this paper we will study a
somewhat different perishable inventory system in which
the arrival process is actually determined by the demand
process. Specifically, we consider a version of a perishable
inventory system of the so-called (§ — 1, S) type, in which
an order for exactly one item is placed at each time that a
demand is satisfied as well as at each occurrence of an
outdating of an item, i.e., when its fixed shelf life has been
reached. The resulting order replenishment lead time is
fixed at 7, and the shelf life of an item is a constant m. The
customer demand process is Poisson.

We distinguish between the two phrases, “number of
items in the system” and “number of available items on the
shelf” in the sense that there are always S items in the
system of which only K, (= 1, ..., §) are available on the
shelf at time ¢. Since the lead time is constant, every cus-
tomer that arrives to find an empty shelf can “see” exactly
how much time, if any, he must wait for the arrival of the
next available item. We assume that such customers are
willing to wait a random time Y, where the Y;s are i.i.d.
random variables having distribution H. We develop the
model for general H and present its solution in terms of a
Volterra integral. We then consider four special examples
of H for which explicit solutions are obtained.

The first waiting time policy is of the form:

H(y)=q +ply=qg, y=0, (0.1)

where 0 < p < 1,9 = 1 — p, and 1, designate the
indicator function.

Under this waiting time policy, an arbitrary demand that
encounters an empty shelf is willing to wait for the next
item with probability p, and will leave unsatisfied with
probability g. Three other waiting time policy models that
will also be introduced to illustrate the broad scope of
applicability of the model to be developed will include H
of the forms exponential, Rayleigh, and uniform
distributions.

Schmidt and Nahmias (1985) have already considered a
special case of waiting time policy (0.1). Namely, their
model is the same (S — 1, §) as ours but is valid only
under the restriction p = 0. In practice, however, their
restrictive model is not really natural since the lead time is
constant and every arriving customer demand can find out
the detailed history of the process. In other words, custom-
ers that arrive to find an empty shelf can know exactly how
much time they must wait for the next available item. But,
in the special case p = 0 they are required to leave w.p.1
even though a replacement item arrival may be imminent.
On the other hand, the waiting time policy (0.1) with 0 <
p < 1 is more general since it takes the option of waiting
into account. Consequently, some customers will choose to
wait, while others will leave unsatisfied. Furthermore, as
will be seen below, our approach is more elegant and so-
phisticated, and lends itself readily to a host of productive
generalizations.

The class of so-called (S — 1, S) inventory models rep-
resents the basis for much of the multiechelon models such
as METRIC (see Sherbrooke 1968) that have application
to control replenishment for high value spare parts, partic-
ularly in the military. However, most models operating
with (S — 1, S) policies that have appeared in the litera-
ture assume unlimited shelf life (Smith 1977, Moinzadeh
and Schmidt 1991, and Graves 1982). The only related

Subject classifications: Inventory, stochastic: perishable items. Lead items: probabalistic propensity for customer waiting.

Area of review: MANUFACTURING OPERATIONS.

Operations Research
Vol. 46, Supp. No. 3, May-June 1998

0030-364X/98/4603-S065 $05.00
© 1998 INFORMS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




S66 / PERRY AND POSNER

work that discusses the (§ — 1, §) model under the as-
sumption of limited shelf life is that of Schmidt and Nah-
mias (1985).

The approach in this study is based on the concepts used
in Perry and Posner (1990), namely, on an analogy be-
tween our model and some queueing model with impatient
customers. (See also Perry and Asmussen 1995.) Graves
(1982) was probably the first to consider a continuous-
review inventory model as an application of the theory of
queues with impatient customers. However, our model dif-
fers considerably from his.

The paper is organized as follows: In Section 1 we intro-
duce the general framework and dynamics of the model. In
Section 2 we formulate the methodology, and develop the
general solution in Section 3 based on the steady state law
of a non-Markov process in terms of a Volterra integral. In
Section 4 an explicit solution is obtained for the waiting
time policy (0.1), while in Section 5, the distribution of the
number of items on the shelf as well as other useful system
measures are obtained. Finally, in Section 6 we demon-
strate the versatility of the model by generating solutions
for models incorporating a variety of waiting time policies.

1. THE MODEL DYNAMICS

The model is characterized by the condition that a replen-
ishment order is placed each time an item is removed from
the shelf; namely, at a moment either of a satisfied de-
mand or of an outdating. The requirement that both the
shelf life and the leadtime are constants guarantees that
the items arrive onto the shelf according to a first-ordered-
first-enter discipline.

A natural criterion for controlling this system should be
linked with the three processes: (i) the unsatisfied demand
process, (ii) the outdating process, and (iii) K = {K, : t =
0}, the number of items on the shelf. Clearly, the point
processes (i) and (ii) are not renewal processes, and (iii) is
not even a Markov process. Thus, in order to analyze the
(§ — 1, S) inventory system we must define a state space
for the model that characterizes a Markov process. Now,
the number of items in the system is always S, and recall
that we would know the remaining times to outdating of
each of them if the demand process were stopped. An
appropriate state space is then the set of possible values
of:

W={W (), Wy(t), ..., Ws(t) :t =0}, (1.1)

where W(t) (i = 1, ..., S5) is the time to outdating of the
ith youngest item if the demand process were stopped at ¢.
Thus,m + 7= W, (t) >...> W) = 0.

Note that we emphasize the word “youngest,” because,
if Wi(t) > m, then the ith youngest item is still unavailable
on the shelf. Also note that the “age” m + 7 — W(¢) is, in
fact, the time elapsed since the ith youngest item was or-
dered, and not from the time it arrived on the shelf.

We specify the S-dimensional Markov process W as the
collection of the Virtual Outdating Times (VOTSs) process,

and the one-dimensional component W, as the minimal
VOT (MVOT). Our analysis is based on the MVOT, even
though it is not a Markov process.

To characterize the dynamics governing the evolution of
W we first introduce the following processes.

Let Z,,n = 1, 2,..., be the time of the nth demand
arrival, and let Y, be the corresponding amount of time it
is willing to wait. Then:

Wi(Z))

m+71, 0<WJI(Z,))<m,
=1 m+ Dy =w@z,)-m

+ Wi Z )y, <wzy-m, mSWJI(Z;)<m+r,
(1.2)
andfori=1,2,...,8 - 1.
Win(Z,]

Wi(Zy), 0<WJ(Z,)<m,
= Wi(zn—)l{}’nzwl(z;)—m}
+ Wi+l(Z,,_)1(y"<Wx(z|;)Am}, msWJ(Z,)<m+r.

(1.3)

Equation (1.2) says simply that immediately after a de-
mand arrival, two events may occur:

(i) If, just before that arrival, the youngest item is avail-
able on the shelf, then the demand is satisfied and a new
order is placed. Thus, the “age” of the new youngest item
is now 0, and consequently, its remaining potential lifetime
ism+ 7.

(ii) If, just before that arrival the youngest item is still
unavailable on the shelf, then the demand will be either
satisfied (if it is willing to wait), or unsatisfied (if it is not
willing to wait). If the demand is willing to wait, case (i)
now applies, and if it is not willing to wait, no order has
been placed and so W\(Z,)) = W(Z,,).

The idea behind (1.3) is similar to that of (1.2). Figure 1
describes the dynamics of the model in case of a satisfied
demand (1(a)) and in case of an unsatisfied demand (1(b))
for § = 3.

Next, let T, kK = 1, 2, ..., be the time of the kth out-
dating. Then,

Tesr = inflt > T, : W.(1) = O}, (1.4)

and as a result, we have (i) W(T) = 0, (ii) {W(T{) =
m + 1}, and (iii) {W, . (T¢) = W(T)} foralli = 1, ...,
S—1,andk=1,2,....

A demand can be either satisfied or unsatisfied. The
composition of the satisfied demand process with the out-
dating process generates a jump process associated with
each component W, (i = 1,..., §) of W. Let J,, be the
time of the nth jump of W,. Then, for an arbitrary time 0 <
< Jn+1 - Jn:

WilJ, +t)=W,(JH—-t, i=1,...,8.

A typical realization of the model is depicted in Figure 2
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Figure 1. (a) A satisfied demand. (b) An unsatisfied demand.

for the case § = 3. In that realization, the shelf is empty of
items in the interval [4,, E,); B, is a time of a satisfied
demand since the customer was willing to wait, but C,; is a
time of an unsatisfied demand since the customer was not
willing to wait. As time progresses, the VOTs decrease
with slope 1 between jumps, and so forth.

2. MODEL FORMULATION

As was already mentioned, K = {K, : ¢t = 0}, defined as the
number of items on the shelf, is not a Markov process. How-
ever, the following relationship between K and W holds:

in which, by definition, Wy (f) = 0and Wy(t) =m + 1. It
follows from (2.1) that W = {W,(¢), ..., W(¢) : t = 0} has
a stationary law if and only if X has. It is evident that K has
a limiting law since, by definition, 0 < K, < §. Let K,
W _i+1, and Ws_, be random variables such that:
P(K.=k)= }im P(K, = k)

= ,11‘1)2 P(Ws_per (1) <m < Ws_ (1)) (2.2)
=PWs—prr <m s Ws_y).

Then also, for the moments, EK., = lim,_,., EK], for all
n =1,2,..., by dominated convergence.

{Ke =k} ={Wsp1 (1) <m < Wg (1)}, (2.1) According to (2.2) the stationary law of K can be ana-
k=0,1,...85, lyzed through that of the appropriate components of W.
Wi(t)’s
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Figure 2. The VOT process with § = 3.
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satisfied demands without waiting.

unsatisfied demands. (Arrival points of customers t hat are not willing to wait.)

B, B,, ... satisfied demands that are willing to wait.

C, Coy. ..

Dy, D,, ... points of outdating.

E,, E,, ... arrivals of fresh available items onto the shelf.
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Indeed, every subset of W is not a Markov process. Thus,
in order to utilize the Markov property, we should use the
entire S-dimensional process W = (W, ..., W,), and then
compute the marginal laws of its individual components.

Our developmental method is based on level-crossing
theory (Perry and Posner 1989, 1990). We arbitrarily fix
x > 0 and partition the state space of the stationary pro-
cess W = (W,, ..., W) into two disjoint subsets, /, and 7.
Then we equate the steady state transition rates from one
set to the other.

Let I = {W, > W, >...> W, > x}. Since, by defini-
tion, W, > W, > ... > W,, it follows that I, = {W, < x}.
In steady state, we have:

{rate of I, — I transitions}
= {rate of I — I, transitions}. (2.3)

In our model, transitions I — I, occur only when the
MVOT W, hits level x. By level-crossing theory (e.g., Perry
and Posner 1985), the I — I, transition rate is the mar-
ginal density of W, and the right-hand side of (2.3) is:

m+0 J'm+'r J>m+‘r
J'w;1=x w2 =w;3 w] =w?2

flwy, @3, , w1, %) dwy doy .. dog; = f (x),
(2.4)
where f(-,,,...,*) is the S-dimensional density of

(Wi, ..., W), and f,,(-) is the marginal density of W,.

To better understand the assertion leading to (2.4), re-
call that an IS — I, transition occurs each time the sample
path of W, downcrosses level x. The total amount of time
W, stays within [x, x + &) during the time interval {¢,, £,)
(or [0, 1), for ¢t = ¢, — t,, since W, is stationary) is:

L
J s, (y<arny dU. (2.5)
0

To evaluate (2.5) let D, (¢) be the number of downcross-
ings of level x > 0 during [0, ¢). Now, W, decreases with
slope 1. Thus, for small 4, each downcrossing of level x +
h is also a downcrossing of level x, and vice versa. There-
fore, (2.5) can be evaluated approximately by D, () - k. As
h | 0, we get wp.1:

4

9@ = dd_X % JO I{W‘(u)gx} du. (26)
Letting ¢t — « in (2.6), we obtain from the strong law of
large numbers that the left-hand side of (2.6) is the aver-
age number of downcrossings of level x by W, per unit
time. Similarly, the right-hand side of (2.6) is the derivative
of the limiting proportion of time W, stays below level x;
this is precisely the stationary density of W,

Remark. The interchange of limits # — 0 and t — » in
obtaining (2.6) should be generally justified more rigor-
ously. In fact, this is the basis for the level-crossing theory

that we have used in some of our previous work (Perry and
Posner 1989, 1990).

To compute the left-hand side of (2.3), note that transi-
tions I, — I7 occur only at jump epochs, namely, either at a
satisfied demand time or at an outdating time. However,
not every jump is a transition. In order that a jump be an I,
— I transition it is necessary that the state just before the
jumpbe {W, <x}N{W,_,>xt={W,<x<W,_,} =
{We_, — W, = x — W, > 0}. In words, the difference
between the ages of the second oldest and oldest items is
greater than the level x minus the MVOT.

Due to the Markov property of the VOT process, the
probability that a jump occurs in the small time interval
[t, t + h) is comprised of the probability of the union of
two (almost) disjoint events; a demand arrival with proba-
bility Az + o(h), and an outdating with probability fy. (0) -
h + o(h), where the probability of the intersection is o(h).

We distinguish between two cases:

(i) x < m. In this case, the I, — I transition rate is:

AP(O< W, <x < W,_1) + fw (0)P(W,_, >x), 2.7
(ii) x > m. In this case, the I, — I transition rate is:
AP(O< W, <m; W, >x)

+APm < W, <xsW,_))P(Y=W, —m)

+ fw, () P(Wi_y = x). (2.8)

Case (ii) differs from case (i) in that the waiting time is
optional. That is, a customer may arrive at the system and
find an empty shelf. Then, he will decide to wait with
conditional probability 1 — H(W, — m) given W,. This
factor enters into the second expression of (2.8). In fact,
such a customer is not satisfied immediately, but only at
the end of the leadtime. However, this does not affect the
VOT process since the shelf is already empty.

Implementing now the concept (2.3) for the Markov
process W, we equate (2.4) with (2.7) and (2.8) for cases
(i) and (ii). Then, by conditioning on W, we finally obtain:

(F(0)PW,_, =x)

+A J PW,_1=x— o)flw)dow, x<m,

4]

fx) = fO)PW,_ =x)

+)\J [1—-H(w~—m)}]
Q0

\ PWo =2x - o) flo)do, x=m,

(2.9)

where f is used for the marginal density, fy , of the
MVOT process in steady state.

3. THE MODEL SOLUTION

The integral Equation (2.9) is still unsolvable since the
probability of the event {W,_; = x} is as yet unknown.
The next lemma will provide the necessary tool to compute
this probability. We assume that the process is sufficiently
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Figure 3. A realization of ordered outdating times.

old so that all items have distinct ages. Then, for arbitrary
time ¢, we assume that the demand process is stopped.

Lemma 1. Let T, be the ith ordered outdating time after t,
fori=1,...,8. Then, T, ..., T, have the same com-
mon law as the S — 1 order statistics taken from a uniform
distribution on [Ty, t + m + 7).

Proof. The demand process is stopped at . Thus, exactly S
outdatings are anticipated in [f, t + m + 1), and conse-
quently S — 1 outdatings are anticipated in [T, ¢ + m +
7). Arbitrarily select one of the § — 1 units and observe its
outdating time, 7,. That is, we select the ith item (among
the § — 1) with probability 1/(S — 1). We wish to show
that 7; is uniformly distributed on [T{,), ¢ + m + 7). Now,
if T; is an outdating time, then T; — (m + 7) is a departure
time representing either a demand arrival or an outdating,
so that T,e[T,), t + m + 1) implies Ty — (m + 7) < T, —
m+ 7)<t T, — (m + 7)is a demand arrival time,
then it is uniformly distributed on [T(y, — (m + 7), ¢)
because the demand process is Poisson. If 7, — (m + 1) is
not a demand arrival time then it must be an outdating
time. In this case, 7; — 2(m + 1) is also a departure time
that is either a demand time or an outdating time. Again,
Toy —2m+n<T,—2m+ 1) <{-(m+ 7).By
repeating the same argument we conclude that for some
n=12...:

Ty —nm+7)<T;, —n(im+r1)

<t—{(n-1(m+n),

A typical realization of the above description is given in
Figure 3.

As an immediate consequence of Lemma 1 we have the
following:

Theorem 1. The difference W,_;, — W, has the same con-
ditional law (given W) as that of the minimal order statis-
tic (among s — 1) taken from a uniform distribution on
W, m + 7).

Substituting this into (2.9) yields:

flx)
() (2 122 e o
0<x<m,

_ f(O)(m + T;x)s—l + AJm(m + T—X)S_lf(w) do

m+ gmtT-w

+ /\pfx[l ~ H(w - m)](2E7=2) " (w) d,

m+ 71— w
m

\ x=m.

G3.1)

4. THE SPECIAL CASE (0.1)

In this section, we explore the particular application of H
of the form (0.1). Substituting (0.1) into (3.1) we have:

flx)

( x
m+ 17— x\s! m+7—x\s1

so that for some n, 7; — n(m + 1) is a demand arrival time f(O)( m+T ) * AL (m +7— w) flw) do,
w.p.l. Since the process is old, t is far enough away from 0<x<m,
the origin, and thus 7; — n(m + 7) is uniformly distributed £0) (m + 71— m)s-]
on [T,y —n(m + 7),t — (n — 1)(m + 7)). By shifting this J m+ T
whole interval (containing point 7; — n(m + 7)) by n(m + = im 4T —x\s-1
1) time units to the right, we obtain that T; is uniformly +A J' 0 (m) flw) dow
distributed on [T(;y, ¢ + m + 7). By repeating this argu- x .,
ment, we get that T, — n(m + 1) is a time of a satisfied + Ap J (mg_—_x)f f(w) dw,
demand for somen = 1,2,...andall j=1,...,8 — 1, \ m MTTT O
and the lemma is an application of a well-known property ms<x<m+r.
associated with the Poisson process. [] (4.1)
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Set g(x) = f(x)/(m + 7 — x)*~'. We then get from (4.1)
that:

4 A0 T
- 0
g(x) (Tn_{r(_:)_] + AG(m) + Ap[G(x) = G(m)],

ms<x<m+r,
4.2)

where G(x) = [§ 9(w) dw. Solving for g in (4.2) and using

the obvious continuity condition g(m*) = g(m™) (see
Perry and Posner 1990), we obtain:
0<x<m,

(x) { eAqm+Apx m<sx<m+ T, (4'3)

for some positive «. From (4.3) we then have:

f(x)

_{B)\¢(S—l,m+7—x), 0<x<m,
S Bre MEMGS — 1, m+T—x), m<x<m+T
(4.4)
for some positive 3, where:
, e Mr6)
b(j, 9):—7—_, j=0,1,...,.

Note that, for p > 0, (4.4) can also be written:

f(x)

0<x<m,

[BAd)(S— 1, m+ 7~ x),

Q ~AgT
:;esoxq d(S—Lpm+71—-x), msx<m+r.

(4.5)

From the normalization condition [§'*" f(x) dx = 1 we
then obtain:

B = "1%:?(1 - % 401

51
+ 2 (olr, 7) —

r=0

d(r, m + 71)). (4.6)

The constant 3 = B(p) is determined according to the
parameter p. Now, let B, = lim, |, B(p) and B; = lim,,,
B(p). 1t follows easily from (4. 6) that:

5-1

Bil=1~2 ¢(r,m+ 1), 4.7)
=0

and for B, it can also be shown that:

S$—-1
Bol=¢(S, 1)+ 2 (&(r, 1) — $(r, m + 7).
r=0

5. NUMBER OF ITEMS ON THE SHELF

Let P(j = 0, 1 , S) be the steady state probability that
j items are on the shelf. To compute P}, we note that j
items are available if and only if m is somewhere between

the (j — 1)th and the jth order statistics. Thus, we have,
forj=1,..., 85, that:

Pl GG

() w) d, .1)

m+7—w

and,

m+t

Py = Pr(W,=m) = J flw) do. (5.2)

Other useful measures can also be obtained once f is
known. Invoking level-crossing theory, it readily follows
that the rate of the outdating process is f(0), and the rate
of replenishment item arrivals to an empty shelf is f(m). In
addition, the rate of the unsatisfied demand process is:

m+T
A J H(ow —m) f(v) do, (5.3)
by PASTA (Wolff 1988).

For general H, we may compute all these measures nu-
merically. However, for the special case of (0.1) we will
present an analytic solution. To compute P; for j = 1,
2,..., S, substitute (4.5) into (5.1), yielding:

j-1
Pj=Bo(S — ], T)[l - 2 o(r, m)], (5.4)
r=0
and
Be
Py=— [1 - Z (r, p'r)] (5.5)
p
Furthermore, the rate of the outdating process is
f(0) = BAH(S — 1, m + 7). (5.6)

Now, the extreme substitution of 8 = 8, into (5.4), (5.5),
and (5.6) is appropriate for the model in which customer
demands that arrive to find an empty shelf are always will-
ing to wait. Similarly, the extreme substitution 8 = B, Is
appropriate for the model in which such customers never
wait. This latter substitution is, in fact, the identical result
obtained by Schmidt and Nahmias (1985).

6. OTHER WAITING TIME POLICIES

In order to demonstrate the versatility of our model, we
now choose several examples of H for which numerical
work is required to obtain an explicit solution.
6.1. Exponential Waiting Time
Under this policy we substitute H(y) = 1 — e~ and obtain:
f(x)

B {ae“(m + 71 —x)°}

Am—Aj2(1-e “"”'”)[m + 17— x]
b

O0<sx<m,

m=s=x<m-++r,

(6.1)

ae

where o is obtained numerically from the normalizing con-
dition.
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6.2. Rayleigh Waiting Time

—y?/20?

Under this policy we substitute H(y) = 1 — e and

get:
ae™m + 17— x)57Y 0<sx<m,
- 1
flx) =] germ=ro VIZ_”[Q’(%@) _5] c(m+ 1 -x), (6.2)
m=sx<m+tr,

where ®(-) designates the standard normal distribution.

Note that the Rayleigh distribution has the unique fea-
ture that its hazard rate is linear. This would be natural
and useful in cases where customers can observe their
waiting times before making a decision.
6.3. Uniform Waiting Time

Under this policy we substitute H(y) = (y — m)/t, (in <
y <m + ), and obtain:

f(x)

ae™m + 1 - x)57] O<x<m,

_ m=Am+1\2 1/x—Alm+1)\:?
= qermea(A e
msx<m+r.
(6.3)
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