Automated determination of isoptics with dynamic geometry

Thierry Dana-Picard ${ }^{1} \quad$ Zoltán Kovács ${ }^{2}$
${ }^{1}$ Jerusalem College of Technology
${ }^{2}$ The Private University College of Education of the Diocese of Linz

CICM Hagenberg, Calculemus August 15, 2018

Abstract

We present two approaches to symbolically obtain isoptic curves in GeoGebra in an automated, interactive process. Both methods are based on computing implicit locus equations, by using algebraization of the geometric setup and elimination of the intermediate variables. These methods can be considered as automatic discovery.
Our first approach uses pure computer algebra support of
GeoGebra, utilizing symbolic differentiation.
The second approach hides all details in computer algebra from the user: the input problem is defined by a purely geometric way. In both approaches the output is dynamically changed when using a slider bar or the free points are dragged.
Programming the internal GeoGebra computations is an on-going work with various challenges in optimizing computations and to avoiding unnecessary extra curves in the output.

Isoptic curves

Let \mathcal{C} be a plane curve. For a given angle θ such that $0 \leq \theta \leq 180^{\circ}$, a θ-isoptic curve (or simply a θ-isoptic) of \mathcal{C} is the geometric locus of points M through which passes a pair of tangents with an angle of θ between them.
If $\theta=90^{\circ}$, i.e. if the tangents are perpendicular, then the isoptic curve is called an orthoptic curve.
Isoptic curves may either exist or not, depending on the given curve and on the angle.

Orthoptics of conics

Parabola

The orthoptic curve of a parabola is its directrix.
If the parabola has equation $y^{2}=2 p x$ (for p a non-zero real), then its directrix has equation $x=p / 2$.

https://www.geogebra.org/m/pwrWy9dG

Orthoptics of conics

Ellipse

The orthoptic curve of an ellipse is its director circle.
If the ellipse is given by the canonical equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then the director circle has the equation

$$
x^{2}+y^{2}=a^{2}+b^{2}
$$

https://www.geogebra.org/m/SkQ5qxYr

Orthoptics of conics

Hyperbola

The existence of an orthoptic curve for a hyperbola depends on the eccentricity c / a, where $c^{2}=a^{2}-b^{2}$.
If it exists, the orthoptic curve of the hyperbola with canonical equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ (i.e. the focal axis is the $x=a x i s)$ is the circle whose equation is $x^{2}+y^{2}=a^{2}-b^{2}$, also called the director circle.

https://www.geogebra.org/m/tZcGGrCm

Previous and related work

- Dana-Picard, Th., Mann, G. and Zehavi, N.: From conic intersections to toric intersections: the case of the isoptic curves of an ellipse, The Montana Mathematical Enthusiast 9 (1), pp. 59-76. 2011.
- Dana-Picard, Th.: An automated study of isoptic curves of an astroid, Preprint, JCT, 2018.
- Dana-Picard, Th. and Naiman, A.: Isoptics of Fermat curves, Preprint, JCT, 2018.
- Miernowski, A. and Mosgawa, W.: Isoptics of Pairs of Nested Closed Strictly Convex Curves and Crofton-Type Formulas, Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry 42 (1), pp. 281-288. 2001.
- Szałkowski, D.: Isoptics of open rosettes, Annales Universitatis Mariae Curie-Skłodowska, Lublin - Polonia LIX, Section A, pp. 119-128, 2005.
- Csima, G.: Isoptic curves and surfaces. PhD thesis, BUTE, Math. Institute, Department of Geometry, Budapest, 2017.

Examples of previous work

The orthoptic of a closed Fermat curve, $x^{16}+y^{16}=1$

Examples of previous work

45°-isoptic of an astroid, $x^{2 / 3}+y^{2 / 3}=1$

Examples of previous work

135°-isoptic of an astroid, $x^{2 / 3}+y^{2 / 3}=1$

Two novel approaches in GeoGebra

An overview

- Both
- can be considered as automatic discovery,
- deliver an algebraic output: a polynomial (with its graphical representation) via Gröbner bases and elimination.

Two novel approaches in GeoGebra

An overview

- Both
- can be considered as automatic discovery,
- deliver an algebraic output: a polynomial (with its graphical representation) via Gröbner bases and elimination.
- The first approach
- uses pure computer algebra support of GeoGebra:
symbolic differentiation of the input formula,
- allows the output to be changed dynamically with a slider bar (dynamic study),
- can do observations up to quartic curves (due to computational challenges).

Two novel approaches in GeoGebra

An overview

- Both
- can be considered as automatic discovery,
- deliver an algebraic output: a polynomial (with its graphical representation) via Gröbner bases and elimination.
- The first approach
- uses pure computer algebra support of GeoGebra:
symbolic differentiation of the input formula,
- allows the output to be changed dynamically with a slider bar (dynamic study),
- can do observations up to quartic curves (due to computational challenges).
- The second approach
- hides all details in computer algebra from the user: the input problem is given in a a purely geometric way,
- is a handy method for a new kind of man and machine communication,
- works only for certain conics.

The first approach

The first approach

Let \mathcal{C} be an algebraic curve given by an implicit equation $F(x, y)=0$.

The first approach

Let \mathcal{C} be an algebraic curve given by an implicit equation $F(x, y)=0$.

1. Compute the derivatives $d_{x}=F_{x}^{\prime}$ and $d_{y}=F_{y}^{\prime}$.

The first approach

Let \mathcal{C} be an algebraic curve given by an implicit equation $F(x, y)=0$.

1. Compute the derivatives $d_{x}=F_{x}^{\prime}$ and $d_{y}=F_{y}^{\prime}$.
2. Consider points $A\left(x_{A}, y_{A}\right)$ and $B\left(x_{B}, y_{B}\right)$ that are assumed to be points of the curve,

The first approach

Let \mathcal{C} be an algebraic curve given by an implicit equation $F(x, y)=0$.

1. Compute the derivatives $d_{x}=F_{x}^{\prime}$ and $d_{y}=F_{y}^{\prime}$.
2. Consider points $A\left(x_{A}, y_{A}\right)$ and $B\left(x_{B}, y_{B}\right)$ that are assumed to be points of the curve, that is,

$$
\begin{equation*}
F\left(x_{A}, y_{A}\right)=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
F\left(x_{B}, y_{B}\right)=0 \tag{2}
\end{equation*}
$$

hold.

The first approach

Let \mathcal{C} be an algebraic curve given by an implicit equation $F(x, y)=0$.

1. Compute the derivatives $d_{x}=F_{x}^{\prime}$ and $d_{y}=F_{y}^{\prime}$.
2. Consider points $A\left(x_{A}, y_{A}\right)$ and $B\left(x_{B}, y_{B}\right)$ that are assumed to be points of the curve, that is,

$$
\begin{equation*}
F\left(x_{A}, y_{A}\right)=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
F\left(x_{B}, y_{B}\right)=0 \tag{2}
\end{equation*}
$$

hold.
3. Compute the partial derivatives $p_{x, A}=F_{x}^{\prime}\left(x_{A}, y_{A}\right)$, $p_{x, B}=F_{x}^{\prime}\left(x_{B}, y_{B}\right), p_{y, A}=F_{y}^{\prime}\left(x_{A}, y_{A}\right)$ and $p_{y, B}=F_{y}^{\prime}\left(x_{B}, y_{B}\right)$.

The first approach

4. Now, when speaking about orthoptic curves, we can assume that

$$
\begin{equation*}
p_{x, A} \cdot p_{x, B}+p_{y, A} \cdot p_{y, B}=0 \tag{3}
\end{equation*}
$$

otherwise, when speaking about θ-isoptics, the following equation holds:

$$
\begin{equation*}
\left(p_{x, A} \cdot p_{x, B}+p_{y, A} \cdot p_{y, B}\right)^{2}=\cos ^{2} \theta \cdot\left(p_{x, A}^{2}+p_{y, A}^{2}\right) \cdot\left(p_{x, B}^{2}+p_{y, B}^{2}\right) . \tag{3'}
\end{equation*}
$$

The first approach

5. When defining a point $P(x, y)$ that is an element of both tangents t_{1} and t_{2} to c, the points
$A, A^{\prime}=\left(x_{A}+p_{y, A}, y_{A}-p_{x, A}\right)$ and P must be collinear; for the same reason, also
$B, B^{\prime}=\left(x_{B}+p_{y, B}, y_{B}-p_{x, B}\right)$ and P are collinear.

The first approach

5. When defining a point $P(x, y)$ that is an element of both tangents t_{1} and t_{2} to c, the points
$A, A^{\prime}=\left(x_{A}+p_{y, A}, y_{A}-p_{x, A}\right)$ and P must be collinear; for the same reason, also
$B, B^{\prime}=\left(x_{B}+p_{y, B}, y_{B}-p_{x, B}\right)$ and P are collinear.
So the following equations hold:

$$
\begin{align*}
& \left|\begin{array}{ccc}
x_{A} & y_{A} & 1 \\
x_{A}+p_{y, A} & y_{A}-p_{x, A} & 1 \\
x & y & 1
\end{array}\right|=0, \tag{4}\\
& \left|\begin{array}{ccc}
x_{B} & y_{B} & 1 \\
x_{B}+p_{y, B} & y_{B}-p_{x, B} & 1 \\
x & y & 1
\end{array}\right|=0 . \tag{5}
\end{align*}
$$

The first approach

(cont'" 'd)
6. Now we have 5 equations.

The first approach

(cont"'d)
6. Now we have 5 equations. By eliminating all variables but x and y we obtain an implicit equation whose graphical representation is, at least partly, the θ-isoptic curve.

The first approach

(cont'" 'd)

6. Now we have 5 equations. By eliminating all variables but x and y we obtain an implicit equation whose graphical representation is, at least partly, the θ-isoptic curve. This technique ("elimination theory", "automated geometry theorem proving", "automated discovery") is discussed in detail in:

- Cox, D., Little, J. and O'Shea, D.: Ideals, varieties and algorithms. Third edition. Springer, 2007.
- Chou, S.-C.: Mechanical Geometry Theorem Proving, Reidel Dordrecht, 1987.
- Abánades, M. A., Botana, F., Kovács, Z., Recio, T. and Sólyom-Gecse, C.: Development of automatic reasoning tools in GeoGebra. Software Demonstration at the ISSAC 2016 Conf. ACM Comm. in Comp. Alg. 50 (3), pp. 85-88. 2016.

The first approach

 (cont'" 'd)6. Now we have 5 equations. By eliminating all variables but x and y we obtain an implicit equation whose graphical representation is, at least partly, the θ-isoptic curve. This technique ("elimination theory", "automated geometry theorem proving", "automated discovery") is discussed in detail in:

- Cox, D., Little, J. and O'Shea, D.: Ideals, varieties and algorithms. Third edition. Springer, 2007.
- Chou, S.-C.: Mechanical Geometry Theorem Proving, Reidel Dordrecht, 1987.
- Abánades, M. A., Botana, F., Kovács, Z., Recio, T. and Sólyom-Gecse, C.: Development of automatic reasoning tools in GeoGebra. Software Demonstration at the ISSAC 2016 Conf. ACM Comm. in Comp. Alg. 50 (3), pp. 85-88. 2016.
Theoretically, the obtained implicit equation is a multiple of the algebraic closure of the geometrically expected set.
That is, some factors of the obtained implicit equation will contain the expected curve.

Examples

The orthoptic of $y=x^{4}$

Examples

The orthoptic of $y=x^{4}$

The equations to consider are as follows:

$$
\begin{align*}
x_{A}^{4}-y_{A} & =0, \tag{1}\\
x_{B}^{4}-y_{B} & =0, \tag{2}\\
4 x_{A}^{3} \cdot 4 x_{B}^{3}+1 & =0, \tag{3}\\
-4 x_{A}^{4}+4 x_{A}^{3} x+y_{A}-y & =0, \tag{4}\\
-4 x_{B}^{4}+4 x_{B}^{3} x+y_{B}-y & =0 . \tag{5}
\end{align*}
$$

Examples

The orthoptic of $y=x^{4}$ (cont'd)
After eliminating all variables but x and y from this system by using a CAS, we obtain the equation
$\left(65536 x^{6}+196608 x^{4} y^{2}+196608 x^{2} y^{4}-41472 x^{2} y+65536 y^{6}+13824 y^{3}+729\right)$.
$\left(16777216 x^{6} y^{3}+50331648 x^{4} y^{5}+5308416 x^{4} y^{2}+50331648 x^{2} y^{7}+\right.$ $\left.5308416 x^{2} y^{4}+559872 x^{2} y+16777216 y^{9}-1769472 y^{6}-186624 y^{3}+19683\right)=0$.

Examples

The orthoptic of $y=x^{4}$ (cont'd)
After eliminating all variables but x and y from this system by using a CAS, we obtain the equation
$\left(65536 x^{6}+196608 x^{4} y^{2}+196608 x^{2} y^{4}-41472 x^{2} y+65536 y^{6}+13824 y^{3}+729\right)$.
$\left(16777216 x^{6} y^{3}+50331648 x^{4} y^{5}+5308416 x^{4} y^{2}+50331648 x^{2} y^{7}+\right.$
$\left.5308416 x^{2} y^{4}+559872 x^{2} y+16777216 y^{9}-1769472 y^{6}-186624 y^{3}+19683\right)=0$.
This can be written as $f_{1} \cdot f_{2}=0$.

Examples

The orthoptic of $y=x^{4}$ (cont'd)
After eliminating all variables but x and y from this system by using a CAS, we obtain the equation
$\left(65536 x^{6}+196608 x^{4} y^{2}+196608 x^{2} y^{4}-41472 x^{2} y+65536 y^{6}+13824 y^{3}+729\right)$.
$\left(16777216 x^{6} y^{3}+50331648 x^{4} y^{5}+5308416 x^{4} y^{2}+50331648 x^{2} y^{7}+\right.$ $\left.5308416 x^{2} y^{4}+559872 x^{2} y+16777216 y^{9}-1769472 y^{6}-186624 y^{3}+19683\right)=0$.

This can be written as $f_{1} \cdot f_{2}=0$. Both f_{1} and f_{2} are reducible over \mathbb{C}.

Examples

The orthoptic of $y=x^{4}$ (cont'd)
After eliminating all variables but x and y from this system by using a CAS, we obtain the equation

$$
\begin{array}{r}
\left(65536 x^{6}+196608 x^{4} y^{2}+196608 x^{2} y^{4}-41472 x^{2} y+65536 y^{6}+13824 y^{3}+729\right) . \\
\quad\left(16777216 x^{6} y^{3}+50331648 x^{4} y^{5}+5308416 x^{4} y^{2}+50331648 x^{2} y^{7}+\right. \\
\left.5308416 x^{2} y^{4}+559872 x^{2} y+16777216 y^{9}-1769472 y^{6}-186624 y^{3}+19683\right)=0
\end{array}
$$

This can be written as $f_{1} \cdot f_{2}=0$. Both f_{1} and f_{2} are reducible over \mathbb{C}. After numerical and visual experiments, it turns out that f_{1} has no real geometrical meaning, but f_{2} has.

Examples

The orthoptic of $y=x^{4}$ (cont'd)
After eliminating all variables but x and y from this system by using a CAS, we obtain the equation
$\left(65536 x^{6}+196608 x^{4} y^{2}+196608 x^{2} y^{4}-41472 x^{2} y+65536 y^{6}+13824 y^{3}+729\right)$.

$$
\left(16777216 x^{6} y^{3}+50331648 x^{4} y^{5}+5308416 x^{4} y^{2}+50331648 x^{2} y^{7}+\right.
$$

$$
\left.5308416 x^{2} y^{4}+559872 x^{2} y+16777216 y^{9}-1769472 y^{6}-186624 y^{3}+19683\right)=0
$$

This can be written as $f_{1} \cdot f_{2}=0$. Both f_{1} and f_{2} are reducible over \mathbb{C}. After numerical and visual experiments, it turns out that f_{1} has no real geometrical meaning, but f_{2} has. Also, f_{2} has a divisor

$$
f=x^{2} y+y^{3}-3 / 8 y^{2} \sqrt[3]{2}-\frac{9 y \sqrt[3]{4}}{64}+\frac{27}{256}
$$

Examples

The orthoptic of $y=x^{4}$ (cont'd)
After eliminating all variables but x and y from this system by using a CAS, we obtain the equation
$\left(65536 x^{6}+196608 x^{4} y^{2}+196608 x^{2} y^{4}-41472 x^{2} y+65536 y^{6}+13824 y^{3}+729\right)$.

$$
\left(16777216 x^{6} y^{3}+50331648 x^{4} y^{5}+5308416 x^{4} y^{2}+50331648 x^{2} y^{7}+\right.
$$

$$
\left.5308416 x^{2} y^{4}+559872 x^{2} y+16777216 y^{9}-1769472 y^{6}-186624 y^{3}+19683\right)=0
$$

This can be written as $f_{1} \cdot f_{2}=0$. Both f_{1} and f_{2} are reducible over \mathbb{C}. After numerical and visual experiments, it turns out that f_{1} has no real geometrical meaning, but f_{2} has. Also, f_{2} has a divisor

$$
f=x^{2} y+y^{3}-3 / 8 y^{2} \sqrt[3]{2}-\frac{9 y \sqrt[3]{4}}{64}+\frac{27}{256}
$$

According to GeoGebra's numerical precision the cubic $f=0$ is indeed the orthoptic of $y=x^{4}$.

Examples

The orthoptic of $y=x^{4}$ (cont'"d)
$1 \quad F(x, y):=x^{4}-y$
$\rightarrow F(x, y):=x^{4}-y$
$2 \mathrm{~F}_{\mathrm{e}}: \mathrm{F}=0$
$\rightarrow F_{\mathrm{e}}: \mathrm{x}^{4}-\mathrm{y}=0$
$3 \quad \mathrm{~F}_{\mathrm{r}}:=\operatorname{LeftSide}\left(\mathrm{F}_{\mathrm{e}}\right)-\operatorname{RightSide}\left(\mathrm{F}_{\mathrm{e}}\right)$
$\rightarrow F_{r}:=x^{4}-y$
$4 \quad \mathrm{~F}_{\mathrm{x}}^{\prime}(\mathrm{x}):=\operatorname{Derivative}\left(\mathrm{F}_{r}, \mathrm{x}\right)$
$\rightarrow \mathrm{F}_{\mathrm{x}}^{\prime}(\mathrm{x}):=4 \mathrm{x}^{3}$
$5 \quad F_{y}^{\prime}(y):=\operatorname{Derivative}\left(F_{r}, y\right)$
$\rightarrow \mathrm{F}_{\mathrm{y}}^{\prime}(\mathrm{y}):=-1$
($p_{x, A}:=\operatorname{Substitute}\left(F_{x}^{\prime},\left\{x=x_{A}, y=y_{A}\right\}\right)$
$\rightarrow \mathbf{p}_{\mathrm{x}, \mathrm{A}}:=4 \mathrm{X}_{\mathrm{A}}^{3}$
$7 \quad P_{y, A}:=\operatorname{Substitute}\left(F_{y}^{\prime},\left\{x=x_{A}, y=y_{A}\right\}\right)$
$\rightarrow p_{y, A}:=-1$
${ }^{n}, B:=$ Substitute $\left(F_{x}^{\prime},\left\{x=x_{B}, y=y_{B}\right\}\right)$

https://www.geogebra.org/m/JvhNwAzF

Examples

The orthoptic of $y=x^{4}-x$

https://www.geogebra.org/m/mfrwfGNc

Examples

35°-isoptic of a hyperbola

Examples

35°-isoptic of a hyperbola (cont'd)
Algebraically, after elimination, GeoGebra obtains

$$
\begin{aligned}
& 2 x^{14}-2 y^{14}-c^{2} x^{12}-c^{2} y^{12}-10 x^{2} y^{12}-18 x^{4} y^{10}-10 x^{6} y^{8}+10 x^{8} y^{6}+18 x^{10} y^{4} \\
& \quad+10 x^{12} y^{2}-6 c^{2} x^{2} y^{10}-15 c^{2} x^{4} y^{8}-20 c^{2} x^{6} y^{6}-15 c^{2} x^{8} y^{4}-6 c^{2} x^{10} y^{2}-23 x^{12} \\
& \quad-23 y^{12}+12 c^{2} x^{10}-12 c^{2} y^{10}-58 x^{2} y^{10}-25 x^{4} y^{8}+20 x^{6} y^{6}-25 x^{8} y^{4}-58 x^{10} y^{2} \\
& \\
& -36 c^{2} x^{2} y^{8}-24 c^{2} x^{4} y^{6}+24 c^{2} x^{6} y^{4}+36 c^{2} x^{8} y^{2}+112 x^{10}-112 y^{10}-60 c^{2} x^{8} \\
& \\
& -60 c^{2} y^{8}-80 x^{2} y^{8}+32 x^{4} y^{6}-32 x^{6} y^{4}+80 x^{8} y^{2}-48 c^{2} x^{2} y^{6}+24 c^{2} x^{4} y^{4}-48 c^{2} x^{6} y^{2} \\
& \\
& -300 x^{8}-300 y^{8}+160 c^{2} x^{6}-160 c^{2} y^{6}+144 x^{2} y^{6}-136 x^{4} y^{4}+144 x^{6} y^{2}+96 c^{2} x^{2} y^{4} \\
& \\
& -96 c^{2} x^{4} y^{2}+480 x^{6}-480 y^{6}-240 c^{2} x^{4}-240 c^{2} y^{4}+544 x^{2} y^{4}-544 x^{4} y^{2}+288 c^{2} x^{2} y^{2} \\
& \\
& -464 x^{4}-464 y^{4}+192 c^{2} x^{2}-192 c^{2} y^{2}+608 x^{2} y^{2}-64 c^{2}+256 x^{2}-256 y^{2}-64=0,
\end{aligned}
$$

where $c=\cos ^{2}\left(\frac{7}{36} \pi\right)$.

Examples

35°-isoptic of a hyperbola (cont'd)
Algebraically, after elimination, GeoGebra obtains

$$
\begin{aligned}
& 2 x^{14}-2 y^{14}-c^{2} x^{12}-c^{2} y^{12}-10 x^{2} y^{12}-18 x^{4} y^{10}-10 x^{6} y^{8}+10 x^{8} y^{6}+18 x^{10} y^{4} \\
& +10 x^{12} y^{2}-6 c^{2} x^{2} y^{10}-15 c^{2} x^{4} y^{8}-20 c^{2} x^{6} y^{6}-15 c^{2} x^{8} y^{4}-6 c^{2} x^{10} y^{2}-23 x^{12} \\
& -23 y^{12}+12 c^{2} x^{10}-12 c^{2} y^{10}-58 x^{2} y^{10}-25 x^{4} y^{8}+20 x^{6} y^{6}-25 x^{8} y^{4}-58 x^{10} y^{2} \\
& -36 c^{2} x^{2} y^{8}-24 c^{2} x^{4} y^{6}+24 c^{2} x^{6} y^{4}+36 c^{2} x^{8} y^{2}+112 x^{10}-112 y^{10}-60 c^{2} x^{8} \\
& -60 c^{2} y^{8}-80 x^{2} y^{8}+32 x^{4} y^{6}-32 x^{6} y^{4}+80 x^{8} y^{2}-48 c^{2} x^{2} y^{6}+24 c^{2} x^{4} y^{4}-48 c^{2} x^{6} y^{2} \\
& -300 x^{8}-300 y^{8}+160 c^{2} x^{6}-160 c^{2} y^{6}+144 x^{2} y^{6}-136 x^{4} y^{4}+144 x^{6} y^{2}+96 c^{2} x^{2} y^{4} \\
& -96 c^{2} x^{4} y^{2}+480 x^{6}-480 y^{6}-240 c^{2} x^{4}-240 c^{2} y^{4}+544 x^{2} y^{4}-544 x^{4} y^{2}+288 c^{2} x^{2} y^{2} \\
& -464 x^{4}-464 y^{4}+192 c^{2} x^{2}-192 c^{2} y^{2}+608 x^{2} y^{2}-64 c^{2}+256 x^{2}-256 y^{2}-64=0,
\end{aligned}
$$

where $c=\cos ^{2}\left(\frac{7}{36} \pi\right)$. After factorization this can be simplified to

$$
c x^{4}+2 c x^{2} y^{2}+c y^{4}-x^{4}-2 x^{2} y^{2}-4 c x^{2}-y^{4}+4 c y^{2}+4 c=0
$$

that is, the isoptic curve is a quartic (containing also the set of points for the 145°-isoptic).

Computational features of the first approach

- Fast computations for conics (dragging of θ is possible)
- Feasible (but slow) computations for certain quartics
- Infeasible computations for most quartics and other higher degree polynomials
- GeoGebra's CAS View is involved
- In most cases, the output contains additional factors that have no geometrical meaning ("extended output")
- GeoGebra's Graphics View correctly plots the extended output
- Factorization of the extended output may be incomplete in GeoGebra (Maple or Singular can be used for absolute factorization): the minimal algebraic form of the curve is difficult to determine

The second approach

A "dynamic geometry" approach

The second approach

A "dynamic geometry" approach

Let A and B be arbitrary points in the plane.

The second approach

A "dynamic geometry" approach

Let A and B be arbitrary points in the plane. (A and B are called free points).

The second approach

A "dynamic geometry" approach

Let A and B be arbitrary points in the plane. (A and B are called free points).

Where to put point P in the plane to have the lengths $A P$ and $B P$ equal?

The second approach

A "dynamic geometry" approach

Let A and B be arbitrary points in the plane. (A and B are called free points).

Where to put point P in the plane to have the lengths $A P$ and $B P$ equal?
https://www.geogebra.org/classic

The second approach

A "dynamic geometry" approach

Let A and B be arbitrary points in the plane. (A and B are called free points).

Where to put point P in the plane to have the lengths $A P$ and $B P$ equal?
https://www.geogebra.org/classic

LocusEquation $(f==g, P)$

The second approach

Orthoptic of a circle

https://www.geogebra.org/m/z2uNpHCU

LocusEquation $(f \perp g, P)$

Some features of the second approach

- GeoGebra's CAS View is not involved
- Each type of input (circle, parabola, ...) must be separately implemented (=programmed) internally in GeoGebra
- Computations are feasible for orthoptics of circle and parabola (moderately slow dragging of θ is possible)
- To obtain isoptics, the AreCongruent command must be used
- Computations are slow for isoptics of circle and parabola
- Isoptic curves may contain extra linear components due to algebraic issues
- Other curves (ellipse, hyperbola and non-conics) are not yet implemented
- The output may contain additional factors that have no geometrical meaning ("extended output")
- Finding the "best" equation system describing the geometric setup can be tricky

Creating the equation system programmatically

GeoGebra's source code is at https://github.com/geogebra/geogebra

AlgoTakeString	377
c AlgoTangentLine	378
5) AlgoTangentLineND	379 380
C AlgotangentPoint	381 382
c) AlgotangentPointND	382 383
c Algotext	384
C AlgotextCorner	385 386 38
© AlgoTextLength	387
© AlgoTextToUnicode	388
8) AlgoTransformation	398
© Algotranslate	391 392
© AlgoTranslateVector	393
c AlgoTurningPointPolyinterval	394 395
© AlgoTurningPointPolynomial	396
3) AlgoTwoNumFunction	397
C AlgoUnicodeToLetter	399
C AlgoUnicodeToText	400
C AlgoUnitOrthoVectorLine	402
© AlgoUnitOrthoVectorVector	48
) AlgoUnitVector	484
(3) AlgoUnitVector 2 D	406
© AlgoUnitVectorLine	407
© AlgoUnitVectorVector	409
(c) AlgoVector	410 411
c AlgoVectorPoint	

f

PPolynomial[] botanaPolynomialsThis = new PPolynomial[5];
// coordinates of F
PVariable f_1 = new PVariable(kernel);
PVariable f2 = new PVariable(kernel):
// F^{\prime} is on the directrix (we need to declare it)
botanaPolynomialsThis[0] = PPolynomial.collinear(f_1, f_2, vparabola[4], vparabola[5], vparabola[6],
vparabola[7])
$/ / P^{\prime}=P F$
botanaPolynomialsThis[1] = PPolynomial. equidistant(f_1, f 2,
vPoint [0], vPoint[1], vparabola[8], vparabola[9]);
// FF' is perpendicular to PT
botanaPolynomialsThis[2] = PPolynomial. perpendicular(vparabola[8], vparabola[9]
$\mathrm{f}_{1} 1, \mathrm{f}_{2} 2$, botanaVarsThis[2], botanaVarsThis[3],
botanaVarsThis[日], botanaVarsThis[1]);
// F'T is perpendicular to the directrix
botanaPolynomialsThis[3] = PPolynomial. perpendicular(f 1, f 2
botanaVarsThis[0], botanaVarsThis[1], vparabolá [4], vparabola[5], vparabola[6], vparabola[7]);
// $T=P$ is not allowed
botanaPolynomialsThis[4] $=$ (PPolynomial
.sqrDistance(botanaVarsThis[0], botanaVarsThis[1],
botanaVarsThis[2], botanaVarsThis [3])
.multiply(new PPolynomial(new PVariable(kernel)))) .subtract(new PPolynomial(coeff: 1));
botanaPolynomials.put(geo, botanaPolynomialsThis); return botanaPolynomialsThis;
\}
// Ellipse and hyperbola cannot be distinguished.
if (c.isEllipse() || c.isHyperbola()) \{
AlgoTangentPoint , getBotanaPolynomials0

Examples

Orthoptic of a parabola

https://www.geogebra.org/m/dtgzjzcj

Examples

45°-isoptic of the circle

LocusEquation(AreCongruent (α, β), P)

Examples

135°-isoptic of the parabola

LocusEquation(AreCongruent $(\alpha, \beta), P)$

Conclusion

- No longer a researchers-only topic? Students can be involved!
- Another application of Gröbner bases and elimination (for polynomial input)
- Experiments exploiting (computer) algebraic and (dynamic geometric) graphical representations
- Further studies may involve more efficient computations and further tricks

Thank you for your kind attention！

Thank you for your kind attention！

